

Tendon of Insertion

Isotonic

Antagonist

Synergists

Fast-Twitch

Tendon of Origin

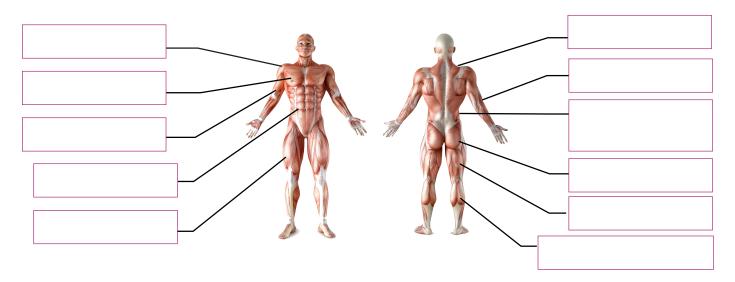
Antagonistic Pairs

Keywords

Muscles and Tendons

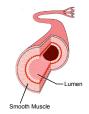
Cardiac Muscle

Muscle Tone


Isometric

Voluntary Muscle

Slow-Twitch


1. Muscular System

2. Types of Muscle

Involuntary muscle - Smooth Muscle that works without consciousness.

- a. Arteries The walls of the arteries contract and push the blood along.
- **b. Stomach** When the walls contract food is squeezed through the gut.

Cardiac Muscle - Smooth muscle that works without consciousness that works nonstop without tiring.

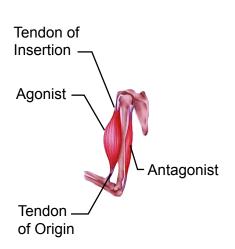
- a. Found in the walls of the heart.
- **b.** When it contracts it beats the walls **squeeze the blood along** the circulatory system.

Voluntary Muscle - Works under conscience control.

- a. Skeletal muscle attaches to bones by tendons called the origin and insertion.
- **b.** They create **movement** but they can only pull bones so they need to work in pairs.
- **c.** Voluntary muscles **tire** so they can only work for a limited amount of time.

3. Muscle Movement

Voluntary	Main Action	
Deltoid	Flexion, extension, adduction and abduction at the shoulder	
Trapezius	Rotation at the shoulder	
Pectorals	Rotation and adduction at the shoulder	
Biceps	Flexion at the elbow	
Triceps	Extension at the elbow	
Latissimus Dorsi	Adduction, extension and rotation at the shoulder	V
Abdominals	Flexion at the trunk	
Gluteals	Rotation and extension at the hip	AA
Quadriceps	Extension at the knee	
Hamstrings	Flexion at the knee	
Gastrocnemius	Extension (plantar flexion) at the ankle joint	


4. Antagonistic Pairs

Two good examples of antagonistic pairs are:

- a. Hamstrings and Quadriceps
- **b.** Biceps and Triceps

Muscles can only pull so they have to work in pairs to create movement.

- a. When the muscle contracts it pulls on the moveable bone attached by the tendon of insertion.
- b. It pulls towards the tendon of origin on the fixed bone.
- c. The contracting muscle is called the prime mover or agonist.
- **d.** The other muscle in the pair **relaxes** and this is called the **antagonist**.

- e. During movement other muscles called synergists contract to support the contraction.
- f. So during muscle action the prime mover contracts while the antagonist relaxes.

5. Types of Muscle Contractions

Isotonic Contraction - Muscle contraction that results in **limb movement**.

- a. This is the most frequent muscle contraction during sports play.
- b. When the muscle contracts it causes a concentric movement.
- c. When the muscle relaxes it causes an eccentric movement.
- **d. Training** your muscles **isotonically** improves dynamic (moving) strength, power and endurance.

Isometric Contraction - Muscle contraction with no limb movement.

- a. Despite contracting the muscle length stays the same.
- b. One muscle may contract isometrically to stabilise a
 movement so others can contract isotonically.
- c. Less sports require this muscle contraction but examples are gymnastic handstand or rugby scrum.
- **d.** Training isometrically provides **little improvements**.

6. Muscle Fibre Types

There are two different types of muscle fibre;

Slow Twitch	Fast Twitch	
Contracts slowly	Contracts quick	
Improved through continuous training	Improved through interval training	
Uses aerobic energy	Uses anaerobic energy	
Fatigues slowly	Fatigues quickly	
Produces little Lactic Acid	Produces lots of Lactic acid	
Suited to endurance sports	Suited to strength/ power sports	

7. Immediate Affects of Physical Activity

- a. Increased energy demands.
- During increased muscle contraction more energy is required.
- b. More blood shunted to the working muscles.
- Blood is redirected from the digestive system to the muscles.
- c. Heart beat increases.
- Increased energy demand also results in an increased oxygen demand.
- d. Muscles fatigue.
- Insufficient oxygen and glucose delivery.
- e. Build up of lactic acid.
- · Due to working anaerobically.
- f. Muscle soreness.
- Small muscle tears develop during contractions.
- g. Muscles produce heat.

8. Trained Muscles and Performance

- a. Increased Physical Performance
- Increase in muscle size and bulk.
- Increase in strength.
- Increase in muscular endurance.
- b. Decreased Risk of Injury
- Muscles act as shock absorbers so well conditioned muscles reduce the landing forces.
- More muscle around the joint helps reduce joint injuries.
- c. Increased number of capillaries surrounding the muscle.
- More capillaries surround the muscle.
- The muscle tissue can therefore receive more O2 and glucose.
- d. Increase in metabolic efficiency.
- · By increasing muscle size you increase the body's engine so you burn more calories.
- Your fuel burning engine is called your Basal Metabolic Rate.

9. Rest

Rest allows the body to recover in a number of ways and can take up to 48 hours.

- **a.** Allows the body to **recover** from **minor injuries**.
- **b. Muscles** can **recover** from **stiffness** and soreness.
- c. Allows the muscles to adapt and improve.
- **d.** Allows for any lost **fluids** to be **replaced**.
- e. Gives time to consume lost energy and refill glycogen stores in the muscle and liver.

10. Muscle Tone

- a. Voluntary muscles readiness to contract or respond.
- **b.** Muscles have **slight tension** ready to be used.
- c. When muscles are trained their tone increases.
- **d.** The abdominal muscles tone helps with our **posture**.
- e. Posture is important in judged sports such as trampoline and gymnastics as well as preventing back problems later in life.

11. Muscle Injuries

Strain - caused by a **tear or rupture in the muscle tissue** resulting in pain, swelling and bruising.

Strain should be treated with R.I.C.E

Rest - sit down or lie down and do not move.

Ice - cool the injured area by applying ice.

Compression - use a bandage to stop the swelling.

Elevation - Raise the joint higher than the heart to reduce the swelling.

Sprains - caused by stretched or torn ligaments from a sudden twisting movement.

Rest - sit down or lie down and do not move.

Ice - cool the injured area by applying ice.

Compression - use a bandage to stop the swelling.

Elevation - Raise the joint higher than the heart to reduce the swelling.

Muscle Atrophy

- a. When we stop training our muscles can shrink in size.
- b. This especially happens when the limb is **restricted from moving** for a long period time.
- c. This might happen when you break your leg and it is put in a cast.

12. Diet

Protein is the most important nutrient for muscle tissue.

Why is it important

- **a.** They **build muscle tissues** to make the body stronger.
- b. They repair muscle tissue.

Sources of food

c. Meat, eggs and nuts.

How much

- d. 2 grams per kilo weight to build muscle mass.
- e. 1 gram per kilo weight for someone not aiming to gain weight.

13. Performance Enhancing Drugs


Athletes sometimes use banned substances to improve their muscle performance.

Type of Drug	Effect on Performance	Risks	Sports Used
Narcotic- analgesics	Painkillers mask the pain of injury.	Injuries become more severe, nausea, drowsiness, dry mouth and constipation	Used in all sports where injuries are sustained.
Peptide hormones & analogues	They mimic the effect of naturally occurring hormones. Increase muscle strength and growth.	Allergic reactions, high blood pressure, abnormal growth in hands, feet and face.	Weight lifter to increase muscle mass.
Anabolic Steroids	Quick increase in strength. Able to train for longer.	Heart disease, high blood pressure, kidney and liver disease, infertility and aggression.	Strength and power related sports such as weightlifting and sprinting

14. Blood Doping

- a. The higher the concentration of red blood cells the more oxygen can be delivered to the working muscles.
- b. Long distance athletes such as cyclists and marathon runners may use this method.
- **c.** Blood is drawn from the athlete a few weeks before competition.
- d. The red blood cells are separated and frozen.
- e. Just before the event the red blood cells are thawed and injected back into the athlete.

